Geometreg Euclidaidd

Oddi ar Wicipedia
(Ailgyfeiriad oddi wrth Geometreg Ewclidaidd)
Jump to navigation Jump to search
Dalen o'r Elfennau gan Euclid, yn dangos triongl hafalochrog ΑΒΓ.

Mae geometreg Euclidaidd yn system fathemategol a briodir i'r Groegwr Euclid, a ddisgrifiodd yn ei werslyfr ar geometreg: yr Elfennau. Mae dull Euclid yn cynnwys tybio set fach o wirebau (axioms), gan ddidynnu llawer o gynigion eraill (theoremau) o'r rhain. Er bod llawer o ganlyniadau Euclid wedi eu nodi gan fathemategwyr cynharach, Euclid oedd y cyntaf i ddangos sut y gallai'r gosodiadau hyn gyd-fynd â system gynhwysfawr a rhesymegol.[1][2][3]

Mae'r Elfennau'n dechrau gyda geometreg planau, sy'n dal i gael ei addysgu yn yr ysgol uwchradd fel y system o wirebau gyntaf, a'r enghreifftiau cyntaf o brawf ffurfiol. Mae ei waith yn datblygu ymhellach i'r geometreg solat o dri dimensiwn. Mae llawer o'r Elfennau yn nodi canfyddiadau a elwir, bellach, yn algebra a theori rhif, a esboniwyd mewn iaith geometrig.

Mae geometreg Euclidaidd yn enghraifft o 'geometreg synthetig', gan ei fod yn datblygu'n yn rhesymegol o wirebau, sy'n disgrifio priodweddau sylfaenol gwrthrychau geometrig megis pwyntiau a llinellau, i osodiadau am y gwrthrychau hynny, i gyd heb ddefnyddio cyfesurynnau i nodi'r gwrthrychau hynny. Mae hyn yn gwbwl wahanol i 'geometreg dadansoddol', sy'n defnyddio cyfesurynnau i gyfieithu cynigion geometrig i fformiwlâu algebraidd.[4]

Gweler hefyd[golygu | golygu cod y dudalen]

Cyfeiriadau[golygu | golygu cod y dudalen]

  1. Eves, cyfr. 1., p. 19
  2. Eves (1963), cyfr. 1, p. 10
  3. Eves, t. 19
  4. Misner, Thorne, and Wheeler (1973), t. 47